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Received 12 March 1987, in final form 7 August 1987 

Abstract. In  this paper we are concerned with discussing a matrix diagonalisation problem 
which occurs when one attempts to estimate the ground-state energy of a Bose fluid. The 
matrix problem comes about when one makes Bogoliubov’s approximation to the 
Hamiltonian o f  an interacting system. The Hamiltonian is then quadratic in creation and 
annihilation operators. The ground-state energy can be computed if one solves an appropri- 
ate matrix diagonalisation problem. Here the roots of the characteristic polynomial for 
the matrix problem turn out to be the turning points of the roots of some simpler polynomials 
which depend on a parameter. Using this fact one can estimate them. 

1. Introduction 

In  this paper we discuss a matrix diagonalisation problem which is related to the 
problem of estimating the ground-state energy of a Bose fluid. In 1947 Bogoliubov, 
in an attempt to understand the phenomenon of superfluidity, introduced a method 
for estimating the ground-state energy of a Bose fluid. Bogoliubov’s basic ansatz is 
that ‘most particles are in a zero-momentum state’. If the Hamiltonian H of the system 
is written in second quantised form then the kinetic energy operator is quadratic in 
creation and  annihilation operators whereas the potential energy operator is quartic. 
From Bogoliubov’s ansatz one can argue that the potential energy operator may be 
well approximated by an  expression which is quadratic in creation and annihilation 
operators. This yields a new Hamiltonian H ,  which is quadratic in creation and  
annihilation operators. Furthermore this Hamiltonian can be written as a sum 

where the k vary in momentum space and the AA commute with each other for different 
values of k.  To calculate the ground-state energy E ,  of HB one can then calculate the 
ground-state energy of each Ak and sum. The problem of calculating the ground-state 
energy of Ah is just a 2 x 2 matrix diagonalisation problem which can easily be solved. 
Hence one obtains a formula for E ,  and also for the ground-state wavefunction Iclg. 
The energy EB may bear little relationship to the ground-state energy E of H .  To 
determine whether it does, one computes the number of particles in the state (LB with 
non-zero momentum. I f  the ratio of the number of these particles to the total number 
of particles is small then one claims that Bogoliubov’s ansatz is ‘consistent’ and therefore 
E ,  is a good approximation to E. 

There have been many calculations of the ground-state energy of Bose systems 
based on Bogoliubov’s method (see Lieb (1965) for a review). In a calculation with 
a Bogoliubov Hamiltonian, Foldy (1961) observed that the energy per particle of a 
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high-density Coulomb fluid should be proportional to the fourth root of the density. 
This suggests that the ground-state energy E N  of a neutral system of N charged bosons 
with Coulomb interaction should be of order - N 7 ’ 5  for large N .  By constructing a 
Bogoliubov-type wavefunction Dyson (1967) proved that Eh. s - C, N”’ , for some 
constant C, > 0. Recently (Conlon 1985, 1987, Conlon et a1 1987) it has been shown 
that EN 3 - C2 N’” , for a constant C2 > C,. This result then proves that in a particular 
case Bogoliubov’s calculation yields the correct ground-state energy at least to order 
of magnitude. 

Here we are concerned with the problem of calculating the ground-state energy of 
the operators Ak of (1.1) and its generalisations. Let us consider annihilation operators 
a,, 1s is n, on Fock space with adjoints a:, 1 G is n. We require the a, to satisfy 
canonical commutation relations 

[ a , ,  a,] = 0 [a , ,  4 1  = St, (1.2) 
where [ 3 is the commutator and S,, is the Dirac S function 6, = 0 for i Zj, SI, = 1 .  Let 
us consider an  operator 

The numbers A , ,  p, ,  1 S i s n, are arbitrary complex numbers but the E , ,  1 s is n, are 
all assumed to be positive. We shall be concerned with putting A in the diagonal form 

where the v,, 1 s i 6 n, also satisfy canonical commutation relations. The a,,  1 s i s  n, 
are positive numbers and  the a t ,  p are to be determined in terms of the A , ,  p,, E , .  

Clearly the ground-state energy of A is p. 
We relate the problem of diagonalising the operator A in (1.3) to the problem of 

estimating the ground-state energy of the Bose fluid. For the Bogoliubov Hamiltonian 
( 1 . 1 )  Ak has the form (1.3) with n = 2 ,  E , = E ~ ,  A , = p 2  real, A 2 = p , = 0 .  In Conlon 
(1985, 1987) and Conlon et a1 (1987) where we show that Bogoliubov’s method is in 
some sense valid we approximate the Hamiltonian H of the system by a modified 
Bogoliubov Hamiltonian HB,M.  This Hamiltonian is, like Hg,  quadratic in creation 
and annihilation operators, and may be written as in (1.1): 

The operators AI,M are of the form (1.3) but now n can be an  arbitrary even integer. 
This corresponds to the fact that HB,M is derived from H by making the modified 
Bogoliubov ansatz ‘most particles are in low momentum states’, the number of such 
states being n/2. This generalisation of Bogoliubov’s ansatz appears to be necessary 
if one wishes to understand how Bogoliubov’s ideas yield a good approximation to 
the ground-state energy of the real Hamiltonian. 

The modified Bogoliubov ansatz then leads in a natural way to the diagonalisation 
problem (1.3) and (1.4). There is a particular case of (1.3) and (1.4) in which the 
diagonalisation problem has a simple form. I t  occurs when the A , ,  p, ,  1 s i S n are real 
and A ,  = p, ,  1 S i S n. I n  that case the a, of (1.4) are the positive roots of the polynomial 
equation 

1 
l +  , = I  Ai(- 

E , - - a E { + a  
(1.6) 
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and p is given by the formula 

This problem has been studied in detail by Conlon (1985). In particular let us suppose 
the E , ,  1 s is n, are all distinct and can be labelled as 

o <  E l <  E 2 < E 1 <  ‘ ‘ ’ < E n .  (1.8) 

Then it is straightforward to see from (1.6) that the positive roots a,, 1 s is n can be 
labelled in such a way that 

8 ,  < a, < & , + I  I s i S n  ( & , + I  = 03).  (1.9) 

In this paper we are concerned with studying the diagonalisation problem (1.3) 
and (1.4) without restrictions on A , ,  p,, 1 s  is n. In this situation the polynomial 
equation determining the a t ,  1 s i s n, is considerably more complicated than (1.6). 
However it turns out that the a, are the turning points of roots of equations like (1.6) 
which depend on a parameter, the parameter varying on the unit sphere. We have no 
adequate explanation of why this strange phenomenon occurs. By applying this fact 
we are able to obtain estimates on the a,, p which are analogous to those which can 
be obtained from the simple polynomial equation (1.6). In  particular we have the 
following theorem. 

Theorem 1 . 1 .  The number p in (1.4) satisfies the inequality 

and is given in terms of the a,, 1 is n, by 
n 

/3 = c (a, - E ,  + $ 1  p,12 - $lA,/’). 
, = I  

(1.10) 

(1.11) 

Suppose the E , ,  1 s i s n, are all distinct and satisfy (1.8). Then in any interval ( E , ,  E , + , )  

the number of roots a, is at least r - 1 and at most r + 1. 

The inequality (1.10) follows easily from the representations (1.3) and (1.4). In fact 
from (1.4) i t  follows that P is the ground-state energy of A. From (1.3) we see that A 
is a positive operator and hence p 3 0. On the other hand the vacuum expectation of 
A is the right-hand side of (1.10) and hence we obtain the second inequality of (1.10). 

In  the following our main concern will be to prove the result of theorem 1.1 on 
the a,, 1 s j  s n. We shall also show how (1.10) follows from (1.11) and some appropri- 
ate estimates on the a, obtained from the polynomial equation determining the cy,, 

without reference to the formulation (1.3) and (1.4). 
One should note here an invariance of the operator A in (1.3) up to a constant 

under the operation K defined by 

Ka, = a :  K a :  = a,  1 s i s n .  (1.12) 

From (1.12) i t  follows that K ’ =  1. This invariance is then an invariance of Kramers 
type (Kramers 1930, 1956, Messiah 1958). We shall see that it gives rise to the fact 
that the roots of the polynomial determining the a, come in pairs a, -a. 
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2. The characteristic polynomial 

We now proceed to construct the canonical form (1.4) for A. Let a be the vector 

a = ( a , ,  . . . , a,) (2.1) 

where the a, satisfy canonical commutation relations (1.2), and let a* be the correspond- 
ing vector with a, replaced by a f .  We wish to make transformations 

a =  vq+ wq* on vectors (2.2) 

q = (71,. . . , 77,) (2.3) 

in such a way that the v,, 1 G i G n, also satisfy canonical commutation relations. For 
this to be the case the n x n matrices V, W, must satisfy the identities 

VW'- W ' = O  w*-ww*=1 (2.4) 

where I is the identity n x n matrix. Here prime denotes adjoint matrix and star 
Hermitian conjugate matrix. The identities (2.4) can be summarised by defining a 
matrix M by 

v w  
M = ( w  v )  

where the bar denotes taking the complex conjugate of the matrix elements. Then 
(2.4) is equivalent to the identity 

MJM* = J (2.6) 
with J the 2 n  x 2 n  matrix given by 

I = ( '  0 - I  O ) ) .  

Next we write (1.3) in matrix form as 

(2.7) 

where the matrices C and D are defined by 

c!J = E!8,, +bJpU,l (2.9) 

D!J = tLi,PJ + ' J P , ] '  

It is easy to see that if  the E ,  are all positive then the matrix B occuring in (2.8), 

(2.10) 

is positive definite Hermitian. Furthermore, in the q representation, (2.8) becomes 

(2.1 1) 

We introduce the operator K of Kramers type defined in (1.12) into the matrix 
representation (2.8) of A. Let K be the operator defined by 

0 1  
. = . ( I  0 )  (2.12) 
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where % denotes the operation of complex conjugation. The adjoint K '  of K is given 
by 

whence 

K ' K  = K K ' =  I .  

(2.13) 

(2.14) 

One can easily see that 

K ' B K  = B ( 2 . 1 5 )  

and that the identity (2.15) corresponds to the invariance of (1 .3 )  under the operator 
K of (1.12). It is also easy to see that a 2n x 2 n  matrix M has the form (2.5) if and  
only if 

K ' M K  = M. (2.16) 

To put (1.3) in the form (1.4) we need to put the matrix B in diagonal form. Hence 
from (2.11) we need to have a matrix M to satisfy 

M* BM = diagonal matrix. (2.17) 

In  order that the 7, satisfy canonical commutation relations we also require that (2.6) 
and (2.16) hold. It is easily seen that (2.6) is equivalent to the identity 

M*JM = J. (2.18) 

In fact from (2.6) we see that 

M *  = J M - ' J  (2.19) 

and (2.18) follows immediately from this fact. 
We consider first the problem of finding M such that (2.17) and (2.18) hold. Since 

B is positive definite and J is Hermitian i t  is a well known fact of matrix theory (Mehta 
1967, 1977) that such a matrix M exists and that the columns of M are obtained as 
the eigenvectors x of the equation 

Bx = aJx. (2.20) 

The additional requirement that M must also satisfy (2.16) follows from the invariance 
(2.15) of B. In  fact for any matrix M let M K  be the matrix given by 

M K  = K ' M K .  (2.21) 

Then from (2.15) i t  follows that i f  M satisfies 

M * B M  = ( D l  " ) 
0 D,  

where Dl and D2 are real n x n diagonal matrices, then 

(2.22) 

(2.23) 

(2.24) 

Further, in view of the fact that 

K ' J K  = -J  
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it follows that if (2.18) holds then one also has that 

M % J M K  = J.  (2.25) 

Thus if M solves the diagonalisation problem (2.17) and (2.18) then so also does the 
matrix MK. Since in the generic case M is unique we have generically that M = MK. 
In the case when M is not unique one sees by continuity considerations that it is 
possible to choose M in such a way that M = MK. Hence by virtue of the invariance 
(2.15) we are always able to solve the diagonalisation problem (2.6), (2.16) and (2.17). 

We proceed now to find the canonical form (1.4) of A. First we observe from (2.22) 
and (2.23) that the diagonal matrices D,,  D2 are identical. Let us write 

From (2.11) it follows that 

(2.26) 

(2.27) 

and this latter expression is exactly the canonical form (1.4). 
Next we find the polynomial equation determining the a,,  1 s is n. From (2.20) 

one sees that this polynomial is the characteristic polynomial for the 2n x 2 n  matrix 
B-’/2JB-l/’. This latter polynomial has degree 2n and therefore has 2n roots, n of 
which are a,,  1 s i s  n. The remaining n roots are given by -a, ,  1 s is n. This follows 
from the invariances (2 .15)  and (2.24). It is clear from these invariances that if x is 
an  eigenfunction of (2.20) with eigenvalue a, then K x  is also an  eigenfunction with 
eigenvalue -a. 

To obtain an explicit formula for the characteristic polynomial for (2.20) we write 
x = [U, w ]  where U, w are column vectors of the n x n matrices V, W. Equation (2.20) 
then becomes 

( c - a )  U + Dw = 0 

Du + ( C  + a ) H’ = 0. 
(2.28) 

Let A , p  be vectors 

A = ( A ,  , .  . . I A n )  P = ( P I 9 . * ’ I P,, 1 (2.29) 

and for any two vectors p ,  v with real or complex entries p, ,  vir 1 c is n, let ( p ,  v )  
denote the sum 

(2.30) 

Let x, y be defined by 

x = ( A ,  u ) + ( p ,  H’) 

y = ( P ,  u ) + ( i ,  6)  
(2.3 1) 
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and E be the n x n diagonal matrix with diagonal entries E , ,  1 s is n. Then the 
equations (2.28) are the same as 

x i  + y p  + 2( E - a )U = 0 

y A  + xfi + 2( E + a ) G = 0. 
(2.32) 

It follows easily then from (2.31) and (2.32) that we have two simultaneous equations 
for x, y ,  namely 

~ [ 2 + ( A , ( E - a ) - ' x ) + ( p ,  ( E + a ) - ' f i )  

(2.33) 

+ y [ 2 + ( p ,  ( E  - c ~ - ' & ) + ( h ,  ( E  +  CY-'^)] = O .  
Since (2.33) must have non-trivial solutions x, y, we find that the characteristic poly- 
nomial for cy is given by the determinant of the 2 x 2 matrix defined by (2.33) being 
zero. The polynomial is therefore 

[2+(A, ( E  - a ) - ' i ) + ( p ,  ( E  + c ~ ) - ' f i ) ]  * [2+(p ,  ( E  - a ) - ' f i ) + ( A ,  ( E  + C Y - ' A ) ]  
= I ( h , ( E - a ) - ' p ) + ( A ,  ( E + c ~ ) - ' p ) \ '  (2.34) 

where we are assuming here that a is real. 
It is clear that the polynomial (2.34) is of degree 2n and to every positive root Q 

there corresponds a negative root -a. We know from the matrix formulation that the 
roots of (2.34) must be real and there are n positive roots which we have labelled 
a ' ,  . . . , cy,. It is not, however, obvious from the form of equation (2.34) that there are 
any real roots. In the following we shall show this and also where these roots must 
be located. 

3. Finding the roots of the characteristic polynomial 

We approach this problem by considering certain auxiliary equations. We can assume 
without loss of generality that 

lA l12+l  p,12 # 0 l G i 5 - n  (3.1) 

for if one of the inequalities (3.1) does not hold it merely reduces the dimension of 
the problem. Now we define three-dimensional vectors U ,  and w, by 

(3.2) 

for 1 5 i s  n, where i, j ,  k are assumed to be the unit vectors along the coordinate axes 
in R 3 .  From (3.1 1 it follows that the vectors (3.2) are non-trivial since 

Iu,I =IM.',I =t(l~,12+/p,12). (3.3) 

Next we parametrise unit vectors U in R' differentiably as u ( R )  where R varies on the 
unit sphere in R'. We wish to consider the polynomial equation in a, 

(3.4) 
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Lemma 3.1. Let a ( R )  be a real root of (3 .4)  which is differentiable at R = R ,  and  
a (0,) # E , ,  1 s i n. Then if grad a (no) = 0, a (0,) is also a root of equation (2.34). 

Proof: Let r(R,) and s(R,) be two unit vectors such that (u(R,) ,  r(a,,), s(Ro))  form 
an orthonormal basis for R 3 .  It is easy to see that by differentiating u(n) at Ro in 
appropriate directions one obtains vectors parallel to r(R,) and ~(0,) .  Now let 

A = C - + C -  I7 lU!l I7 Iwcl + 2  
1 - 1  E ,  - a  , = I  & , + C Y  

VI w, B =  C -+E - 
, = I  & ! - a  ) = I  &,+a 

so A is a scalar and B is a vector. Then equation (3 .4)  reads 

A ( a )  = B ( a )  ~ ( 0 ) .  

(3 .5)  

If we differentiate (3.4) with respect to R at R = 0, and use the fact that grad a(R,) = 0 
we also obtain the equations 

B ( a )  * r(R,) = 0 B ( a )  * s(R,) =o.  (3 .7)  

The equations (3 .6)  and (3.7) then yield 

A ( a ) ’ =  IB(a)I2 (3 .8)  

and this is the same as 

A ( a ) ’ - [ B ( a )  i ] ’ =  [ B ( a )  . j ] ’ + [ B ( a ) .  k]’ (3.9) 

{ A ( a ) + [ B ( a )  i ] } { A ( a )  - [ B ( a )  * i]} = [ B ( a )  - j ] ’ +  [ B ( a )  k]’ .  (3 .10)  

It is easy to see that the left-hand side of (3.10) is identical to the left-hand side of 
(2.34) and the right-hand sides are also identical. It follows then that a ( 0 , )  is a root 
of (2.34). 

Lemma 3.2. In the region R in which u(n) is not parallel to any U,, 1 is n, equation 
(3.4) has n positive roots a , ( R ) ,  1 s is n. The .,(a) may be chosen locally to be C“ 
functions satisfying the inequality 

E ,  < a,(Q) < & , + I  1 S i s n .  (3.11) 

Here the E ,  are assumed to satisfy the condition (1.8) and E, , , ,  = +W. 

Proof: This is a simple consequence of the implicit function theorem and the fact that 
the function of a on the left-hand side in (3.4) goes from -m to +W as a increases 
from E ,  to E , , , ,  

Lemma 3.3. Suppose at R =a,, u(R, )  is parallel to U, .  Then a = E ,  is a zero of (3 .4)  
at R = 0 ,  if and only if the coefficient of ( E ,  - a ) - ’  in (2 .34)  is zero. 

Proof: We take 

(3 .12)  
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so the coefficient of ( F ,  - a ) - '  in ( 3 . 4 )  is zero. Then E, is a root of the equation for 
R = R ,  only if 

This is the same as 

(3 .14)  

It is not difficult now to verify that the left-hand side of (3 .14)  is exactly the coefficient 
of ( E ,  -a)-' in equation (2 .34) .  

Lemma 3.4. Suppose the coefficients of ( E ,  - a) - '  in ( 2 . 3 4 )  are all non-zero, 1 5 i 5 n. 
Then the functions a , ( R ) ,  1 s is n, defined in lemma 3.2 are infinitely differentiable 
on the unit sphere. 

ProoJ: The function .,(a) can only fail to be C" i f R  = R,  or R,,,, and lim,l,c,, a ,(R) = E, 

or limn,n,,, a,(R)  = E , , ,  respectively. We consider the former case. We write ( 3 . 4 )  as 

where by assumption we have g ( E , )  # 0. Equation ( 3 . 1 5 )  is the same as 

( 3 . 1 5 )  

(3 .16)  

and this clearly has a solution at R = R,  given by .(RI) = E , .  The implicit function 
theorem then guarantees a C" solution a ( R )  in a neighbourhood of R = R ,  satisfying 
a(R,) = E , ,  and it is easy to see that 

grad a ( R , )  = O .  (3 .17)  

Let us assume that for some R close to 0 ,  we have a ( R ) >  E , .  I f  follows from ( 3 . 1 6 )  
then that g (a (R) )>O.  Thus g ( a ) > O  for a close to E,.  It is therefore clear that for 
all R close to R, ,  a ( R ) >  E , .  Hence a(R) is identical to the function a , ( R )  when 
R # 0,.  We have shown then that a , ( R )  is C" at s2 = RI. Similar arguments apply to 
the case R = a,,, . 

Lemma 3.5. Assume the conditions of lemma 3.4. Then the 2n numbers max,, a , ( R ) ,  
min,, a , ( R ) ,  1 s i G n, are identical to the 2n numbers a , ,  . . . , a,, E , ,  . . . , E , ,  where the 
a ,  are defined by ( 1 . 4 ) .  

Proof: From lemma 3.1 one sees that an extremum of a , ( R )  is one of the numbers a ,  
in ( 1 . 4 )  provided i t  is not an F , ,  1 

Proof of theorem 1.1 .  We assume again the conditions of lemma 3.4.  The functions 
a, (Q) ,  1 s j  < i +  r, take their values in the interval [ E , ,  E , ~ ~ ] .  The number of maxima 
and minima of these functions is 2r. I f  E ,  < min a , ( R )  < max a ,+ , - , (R)  < E,, ,  then there 
are 2r - ( r  - 1 )  = r +  1 roots a ,  in the interval (E,, E , ~ ~ ) .  On the other hand if the 
equalities ~ , = m i n a , ( R ) < m a x  ( Y , + , - ~ ( R ) = E , , ,  hold there are 2 r - ( r + l ) = r - l  roots 
a, in ( E ) ,  E , + ~ ) .  The other parts of theorem 1 . 1  follow from the matrix formulation. 

j G n. 
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We conclude this paper by showing how to obtain the inequality (1.10) from the 
properties of the polynomial (3.4). This method has the advantage of showing how 
one can improve on the inequality (1.10). An improvement of (1.10) was needed in 
the simple case discussed by Conlon (1985). 

Theorem 3.6. Let p be defined by (1.11). Then p satisfies the inequality p 2 0 .  

Prooj Define a transformation a+Cl' such that u(Cl ' )  is the reflection of u ( n )  in the 
j ,  k plane. It is easy to see then that -ai(Cl'), 1 S i s  n, are the negative roots of (3.4). 
It follows then, on calculating the coefficient of a'"-' in (3.4) that 

n n c [ a , ( R ) - a , ( R ' ) ] = $  (.:-U,). u(R).  
, = I  , = I  

(3.18) 

Thus from (3.2) we have that 

From lemma 3.5 we have 
n n 

( a , + € , ) =  [ m a x a , ( n ) + m i n a , ( n ) ]  
, = I  I = I  

(3.20) 

The result follows clearly from (3.20). 

Theorem 3.7. With p defined as in (1.11) there is the inequality 

P S  i 14. (3.21) 
, = I  

ProoJ Consider the polynomial equation 

I U i l -  U, u ( n )  
+ 2 = 0 .  

, = I  E ,  - a '  
(3.22) 

It is clear that (3.22) has n positive roots a : ( R ) ,  1 s i s  n, where 

E ,  < a:(n) < € , + I  l s i s n .  (3.23) 
Furthermore by comparing (3.4) and (3.22) one also has that 

a,(Cl) s a:(n, 1 s i c n .  (3.24) 
Next let Q ( a )  = 0 be the polynomial equation obtained from (2.34) by setting all the 
terms in ( E ,  + a) - '  to zero, 1 i s n. This gives an equation with n roots ai, . . . , a :, . 
One can show by mimicking the previous arguments that the 2n numbers c u i , .  , . , a: ,  
E , , .  . . , E ,  are identical to the numbers max c u : ( C l ) ,  min cu:(Cl), 1 s  i s n .  Now by 
computing the coefficient of a) ' - '  in the equation Q ( a )  = 0 one sees that 

(3.25) 
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We have then from (3.24) the inequalities 
n " 
(a,+&,)= 2 [ m i n a , ( n ) + m a x a , ( R ) ]  

s 2 [min a : ( n ) + m a x  (Y:(Q)] 

8 = 1  , = I  

n 

I l l  

n 
= 2 (a:+&,). 

i = l  
(3.26) 

Inequality (3.21) then follows from (3.25) and (3.26). 
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